| | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | Service at 20°C
(68°F) | Service at 40°C
(104°F) | |-----------------|---------------------------------|--|---------------|---------------------------|----------------------------| | | Carbonic acid | H ₂ CO ₃ (463-79-6) | 15% | Ex | Ex | | | Fluorosilicic acid | H ₂ SiF ₆ | 30% | Ex | Ex | | | Fluorosilicie aciu | (16961-83-4) | 10% | Ex | Ex | | | | | 40% | Ex | Ex | | | Hydrobromic acid | HBr (10035-10-6) | 20% | Ex | Ex | | | | | 10% | Ex | Ex | | | | 1161 | 37% | Ex | Ex | | | Hydrochloric acid | HCI (647-01-0) | 20% | Ex | Ex | | ds | | | 10% | Ex | Ex | | Inorganic Acids | | HNO ₃ | 65% | Р | Р | | ganic | Nitric acid | (7697-37-2) | 20% | Ex* | G | | norg | | | 10% | Ex* | G | | _ | Oleum | $H_2SO_4 \cdot (SO_3)_x$ [8014-95-7] | 30% | M | M | | | Phosphoric acid | | 85% | G* | G* | | | (orthophosphoric acid) | H ₃ PO ₄ (7664-38-2) | 20% | G* | G* | | | | | 10% | Ex | Ex | | | Sulfuric acid | | 100% | Р | Р | | | | H ₂ SO ₄ (7664-93-9) | 98% | Ex | Ex* | | | | | 50% | Ex | Ex* | | | | | 20% | Ex | Ex* | | | | | 10% | Ex | Ex* | | | Acetic acid | CIT COC:: | 30% | M* | M* | | | (ethanoic acid) | CH ₃ COOH (64-19-7) | 20% | M* | M* | | | | | 10% | M | M | | 10 | Acrylic acid | CH ₂ =CHCO ₂ H (79-10-7) | - | G* | M* | | Acid | Citric acid | C ₆ H ₈ O ₇ (77-92-9) | - | Ex | Ex | | Organic Acids | Cresylic acid
(cresol) | C ₇ H ₈ O (1319-77-3) | - | Ex* | Ex* | | Ō | Formic acid
(methanoic acid) | HCOOH (64-18-6) | 10% | Р | Р | | | Lactic acid | CH₃CH(OH)(COOH) | 88% | M | M | | | (2-hydroxypropanoic acid) | (50-21-5/79-33-4/10326-41-7) | 5% | Ex | Ex | | | Phenol | C ₆ H ₅ OH (108-95-2) | - | Р | Р | | | | No significant details at hearing and a section of the product that FO works | |--|----|--| | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | | | | suitable for all applications including long term immersion | | Const | | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | , | Significant deterioration / loss of barrier properties after 1 week or less | | Poor P Not suitable for any applications | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via chemical resistance testing | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |-----------------|---|---|---------------|----------------|-----------------| | | n-Butanol | C ₄ H ₉ OH | - | Ex | Ex | | | (butyl alcohol)
2-Ethoxyethanol | (71-36-3) | | | | | | (Cellosolve) | C ₄ H ₁₀ O ₂ (110-80-5) | - | Ex | Ex | | | Ethanol
(ethyl alcohol) | CH ₃ CH ₂ OH (64-17-5) | - | Ex | Ex | | | Ethylene glycol (ethan-1,2-diol, monoethylene glycol, MEG) | (CH ₂ OH) ₂ (107-21-1) | - | Ex | Ex | | Alcohols | Glycerol
(glycerine, propane-1,2,3-triol) | HOCH ₂ CH(OH)CH ₂ OH (56-81-5) | - | Ex | Ex | | Ā | 1-Hexanol | CH ₃ (CH ₂)₅OH (111-27-3) | - | Ex | Ex | | | Isobutanol | (CH ₃) ₂ CHCH ₂ OH (78-83-1) | - | Ex | Ex | | | Methanol
(methyl alcohol) | CH ₃ OH (67-56-1) | - | М | M | | | 2-Methoxyethanol | C ₃ H ₈ O ₂ (109-86-4) | - | Ex | Ex | | | Propylene glycol
(1,2-Propanediol) | CH ₃ CH(OH)CH ₂ OH (57-55-6) | - | Ex | Ex | | | Ammonia | NH ₃ | 25% | Ex | Ex | | | Allillonia | (7664-41-7) | 10% | Ex | Ex | | | | | 40% | Ex | Ex | | v | Potassium hydroxide
(caustic potash) | KOH (1310-58-3) | 20% | Ex | Ex | | Alkalis | (caustic potasti) | (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10% | Ex | Ex | | ∢ | | | 50% | Ex | Ex | | | Sodium hydroxide | NaOH | 40% | Ex | Ex | | | (caustic soda) | (1310-73-2) | 20% | Ex | Ex | | | | | 10% | Ex | Ex | | v | Diethanolamine (DEA)
(2,2'-iminodiethanol) | HN(CH ₂ CH ₂ OH) ₂ (111-42-2) | - | Ex | Ex | | \mide | Diethylenetriamine (DETA) | HN(CH ₂ CH ₂ NH ₂) ₂ (111-40-0) | - | Р | Р | | Amines & Amides | Dimethylformamide (DMF) | (CH ₃) ₂ NC(O)H (68-12-2) | - | Р | Р | | Amine | Diethylene glycolamine (DGA)
(2-(2-aminoethoxy) ethanol) | H ₂ NCH ₂ CH ₂ OCH ₂ CH ₂ OH
(929-06-6) | - | Ex* | Ex* | | | N-Methyl diethanolamine (MDEA) | CH ₃ N(CH ₂ CH ₂ OH) ₂ (105-59-9) | - | Ex | Ex | | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | |--|----|--| | Excellent | EX | suitable for all applications including long term immersion | | Const | G | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | Р | Significant deterioration / loss of barrier properties after 1 week or less | | Not suitable for any applications | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via chemical resistance testing | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | ## CHEMICAL RESISTANCE OF BELZONA® 4301 | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |------------------------------|---|--|---------------|----------------|-----------------| | | Monoethanolamine (MEA)
(2-aminoethanol) | H ₂ NCH ₂ CH ₂ OH (141-43-5) | - | Ex* | Ex* | | ides
 | Pyridine | C_5H_5N (110-86-1) | - | M | M | | Amines & Amides
continued | Sulphanol solution
(50% diisopropanolamine, 25% tetramethylene
sulphone, 25% water) | N/A | • | Ex | Ex | | Amii | Triethanolamine (TEA)
(2,2',2"-nitrilotriethanol) | N(CH ₂ CH ₂ OH) ₃ (102-71-6) | - | Ex | Ex | | | Triethylenetetramine (TETA) | [CH ₂ NHCH ₂ CH ₂ NH ₂] ₂ (112-24-3) | - | M | M | | | Apple juice | - | - | Ex | Ex | | | Beer | - | - | Ex | Ex | | | Beet sugar | - | - | Ex | Ex | | | Butter | - | - | Ex | Ex | | | Buttermilk | - | - | Ex | Ex | | | Cider | - | - | Ex | Ex | | | Citrus juices | - | - | Ex | Ex | | <u>ş</u> | Fermentation liquor | - | - | Ex | Ex | | stuf | Glucose | - | - | Ex | Ex | | poo | Ketchup | - | - | Ex | Ex | | 82 | Margarine | - | - | Ex | Ex | | ages | Mayonnaise | - | - | Ex | Ex | | Beverages & Foodstuffs | Milk | - | - | Ex | Ex | | Ä | Molasses | - | - | Ex | Ex | | | Mustard | - | - | Ex | Ex | | | Salad Oil | - | - | Ex | Ex | | | Sugar liquids | - | - | Ex | Ex | | | Tomato juice | - | - | Ex | Ex | | | Vinegar | - | - | Ex | Ex | | | Whisky and Wine | - | - | Ex | Ex | | | Yeast | - | - | Ex | Ex | | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | |--|----|--| | LACEHETIC | LX | suitable for all applications including long term immersion | | Cand | G | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | Door | Р | Significant deterioration / loss of barrier properties after 1 week or less | | Not suitable for any applications | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via c | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |-----------------|---|---|---------------|----------------|-----------------| | | Amyl acetate | CH ₃ COO(CH ₂) ₄ CH ₃ (628-63-7) | - | Ex | Ex | | | Butyl acetate | C ₆ H ₁₂ O ₂ (123-86-4) | - | Ex | Ex | | | N-Butyl ether | C ₈ H ₁₈ O (142-96-1) | - | Ex | Ex | | | Dibutyl phthalate | C ₁₆ H ₂₂ O ₄ (84-74-2) | - | Ex | Ex | | | Dibutyl sebacate | C ₁₈ H ₃₄ O ₄ (109-43-3) | - | Ex | Ex | | Esters & Ethers | Diethyl ether | (C ₂ H ₅) ₂ O (60-29-7) | - | Ex | Ex | | 8
E | Dioctyl adipate | C ₂₂ H ₄₂ O ₄ (123-79-5) | - | Ex | Ex | | Ester | Dioctyl phthalate | C ₆ H ₄ (C ₈ H ₁₇ COO) ₂ (117-81-7) | - | Ex | Ex | | | Dioctyl sebacate | (CH ₂) ₈ (COOC ₈ H ₁₇) ₂ (2432-87-3) | - | Ex | Ex | | | Ethyl acetate | CH ₃ COOCH ₂ CH ₃ (141-78-6) | - | Ex | Ex | | | Methyl acetate | CH ₃ COOCH ₃ (79-20-9) | - | Ex | Ex | | | Propylene glycol monomethyl ether acetate | CH ₃ CO ₂ CH(CH ₃)CH ₂ OCH ₃ (108-65-6) | - | Ex | Ex | | | Tributyl phosphate | (CH ₃ CH ₂ CH ₂ CH ₂ O) ₃ PO
(126-73-8) | - | Ex | Ex | | | Butane | C ₄ H ₁₀ (106-97-8) | - | Ex | Ex | | | Carbon dioxide | CO ₂ (124-38-9) | - | Ex | Ex | | | Carbon monoxide | CO (630-08-0) | - | Ex | Ex | | | Chlorine gas | Cl ₂ (7782-50-5) | - | G | G | | | Hydrogen gas | H ₂ (1333-74-0) | - | Ex | Ex | | Gases | Hydrogen sulphide | H ₂ S (7783-06-4) | - | Ex | Ex | | ğ | Natural Gas
(Methane) | CH ₄ (74-82-8) | - | Ex | Ex | | | Nitrous oxide
(dinitrogen monoxide) | N ₂ O (10024-97-2) | | Ex | Ex | | | Ozone (aqueous solution) | O ₃ (10028-15-6) | - | G | G | | | Sulphur dioxide | SO ₂ (7446-09-5) | - | Ex | Ex | | | Sulphur trioxide
(sulphuric anhydride) | SO ₃ (7446-11-9) | - | Ex | Ex | | | | No significant details at hearing and a section of the product that FO works | |--|----|--| | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | | | | suitable for all applications including long term immersion | | Const | | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | , | Significant deterioration / loss of barrier properties after 1 week or less | | Poor P Not suitable for any applications | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via chemical resistance testing | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |---------------------|---|--|---------------|----------------|-----------------| | suc | Chlorobenzene | C ₆ H ₅ Cl (108-90-7) | - | Ex | Ex | | Halocarbons | Chloroform | CHCl ₃ (67-66-3) | - | Р | Р | | Halo | Methylene chloride
(dichloromethane) | CH ₂ Cl ₂ (75-09-2) | - | Р | Р | | | Aviation fuel
(AVCAT, AVGAS, AVTAG, AVTUR) | N/A | - | Ex | Ex | | | Benzene
(benzol) | C ₆ H ₆ (71-43-2) | - | Ex | Ex | | | Cyclohexane | C ₆ H ₁₂ (110-82-7) | - | Ex | Ex | | | Gasoline
(petrol) | N/A
(8032-32-4) | - | Ex | Ex | | | Heptane | CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ (142-82-7) | - | Ex | Ex | | | Hexane | CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ (110-54-3) | - | Ex | Ex | | | lso-octane
(2,2,4-trimethylpentane) | (CH ₃) ₃ CCH ₂ CH(CH ₃) ₂ (540-84-1) | - | Ex | Ex | | oons | Kerosene | N/A
(8008-20-6) | - | Ex | Ex | | Hydrocarbons | Mesitylene
(1,3,5-trimethylbenzene) | C ₆ H ₃ (CH ₃) ₃ (108-67-8) | - | Ex | Ex | | Hyc | Naphtha | N/A
(8030-30-6) | - | Ex | Ex | | | Naphthalene | C ₁₀ H ₈ (91-20-3) | - | Ex | Ex | | | Paraffin | N/A
(8002-74-2) | - | Ex | Ex | | | Styrene | C ₆ H ₅ CH=CH ₂ (100-42-5) | - | Ex | Ex | | | Toluene
(methylbenzene, phenylmethane, toluol) | C ₆ H ₅ CH ₃ (108-88-3) | - | Ex | Ex | | | Turpentine | N/A
(8006-64-2) | - | Ex | Ex | | | White Spirit
(Stoddard solvent, Mineral spirits) | N/A
(8052-41-3) | - | Ex | Ex | | | Xylene
(dimethyl benzene, xylol) | C ₆ H ₄ (CH ₃) ₂
(95-47-6/108-38-3/106-42-3/1330-20-7) | - | Ex | Ex | | es | Acetone | (CH ₃) ₂ CO (67-64-1) | ı | Ex | Ex* | | ehyd | Formaldehyde | HCHO (50-00-0) | 37% | Р | Р | | & Ald | Propionaldehyde | CH ₃ CH ₂ CHO (123-38-6) | - | Р | Р | | Ketones & Aldehydes | Methyl amyl ketone
(2-Heptanone) | C ₇ H ₁₄ O (110-43-0) | - | Ex | Ex | | Kei | Methyl ethyl ketone
(MEK, butanone) | CH ₃ C(O)CH ₂ CH ₃ (78-93-3) | - | Ex | Ex* | | | | No significant deterioration / barrier properties retained for greater than 52 weeks. | |---|--------|--| | Excellent | Ex | suitable for all applications including long term immersion | | Good | e
G | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | ס | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | Poor Significant deterioration / loss of barrier properties after 1 week or less Not suitable for any applications | | Significant deterioration / loss of barrier properties after 1 week or less | | | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via chemical resistance testing | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |---------------|---|---|---------------|----------------|-----------------| | | Brake fluid | - | - | Ex | Ex | | | Bromine water (saturated) | - | - | G | G | | | Emulsion paint | - | - | Ex | Ex | | | Fertilizer solutions | - | - | Ex | Ex | | | Grease | - | - | Ex | Ex | | | Ink (water based) | - | - | Ex | Ex | | | Isothiazolinone | C ₃ H ₃ NOS (1003-07-2) | - | Ex | Ex | | | N-Methylpyrrolidone (NMP) | C ₅ H ₉ NO (872-50-4) | - | М | M | | sno | Resins & rosins (natural) | - | - | Ex | Ex | | aneo | Roof pitch | - | - | Ex | Ex | | Miscellaneous | Rubber latex emulsions | - | - | Ex | Ex | | Mis | Sewage | - | - | Ex | Ex | | | Sodium hypochlorite
(bleach) | NaOCI (7681-52-9) | 10% | G | G | | | Starch | (C ₆ H ₁₀ O ₅) _n (9005-25-8) | - | Ex | Ex | | | Tar | - | - | Ex | Ex | | | Tetraethyl lead | (CH ₃ CH ₂) ₄ Pb | - | Ex | Ex | | | Tetrahydrofuran | (CH ₂) ₄ O (109-99-9) | - | G | G | | | Urea | CO(NH ₂) ₂ (57-13-6) | 32% | Ex | Ex | | | Water (deionised, distilled, fresh & sea) | H ₂ O (7732-18-5) | - | Ex | Ex | | | Castor oil | - | - | Ex | Ex | | | Coconut oil | - | - | Ex | Ex | | | Cod liver oil | - | - | Ex | Ex | | _ | Corn oil | - | - | Ex | Ex | | - Mineral | Diesel oil | - | - | Ex | Ex | | Ξ̈ | Hydraulic oil | - | - | Ex | Ex | | oils . | Lubricating oil | - | - | Ex | Ex | | | Oil, petroleum | - | - | Ex | Ex | | | Oil/water mixtures | - | - | Ex | Ex | | | Silicone oil | - | - | Ex | Ex | | | Soybean oil | - | - | Ex | Ex | | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | |--|----|--| | Excellent | EX | suitable for all applications including long term immersion | | Const | G | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | Moderate M No significant deterioration / barrier properties retained for 1-12 weeks Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | No significant deterioration / barrier properties retained for 1-12 weeks | | | | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | Р | Significant deterioration / loss of barrier properties after 1 week or less | | Not suitable for any applications | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex Bold text highlights real life data obtained via chemical resistance testing | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |-------------------------------------|--|---|---------------|----------------|-----------------| | | Aluminium chloride | AICI ₃ (7446-70-0) | - | Ex | Ex | | | Aluminium sulphate | Al ₂ (SO ₄) ₃ (10043-01-3) | - | Ex | Ex | | | Ammonium bicarbonate | (NH ₄)HCO ₃ (1066-33-7) | - | Ex | Ex | | | Ammonium fluorosilicate | (NH ₄) ₂ SiF ₆ (16919-19-0) | - | Ex | Ex | | | Ammonium nitrate | NH ₄ NO ₃ (6484-52-2) | - | Ex | Ex | | | Ammonium phosphate | (NH ₄) ₃ PO ₄ (10361-65-6) | - | Ex | Ex | | | Ammonium sulfate | (NH ₄) ₂ SO ₄ (7783-20-2) | - | Ex | Ex | | | Barium carbonate | BaCO ₃ (513-77-9) | - | Ex | Ex | | | Barium chloride | BaCl ₂ (10361-37-2) | - | Ex | Ex | | | Barium sulfate | BaSO ₄ (7727-43-7) | - | Ex | Ex | | itions | Barium sulphide | BaS (21109-95-5) | - | Ex | Ex | | entra | Bromine chloride | BrCl (13863-41-7) | - | Ex | Ex | | Salt Solutions (All Concentrations) | Calcium carbonate | CaCO ₃ (471-34-1) | - | Ex | Ex | | s (All | Calcium chloride | CaCl ₂ (10043-52-4) | - | Ex | Ex | | ution | Calcium fluoride | CaF ₂ (7789-75-5) | - | Ex | Ex | | lt Sol | Calcium hypochlorite | Ca(CIO) ₂ (7778-54-3) | - | Ex | Ex | | Sa | Calcium sulphate | CaSO ₄ (7778-18-9) | - | Ex | Ex | | | Chromium potassium sulphate
(Chrome alum) | KCr(SO ₄) ₂ (10141-00-1) | - | Ex | Ex | | | Copper acetate | Cu(CH ₃ COO) ₂ | - | Ex | Ex | | | Copper chloride | CuCl ₂ (7447-39-4) | - | Ex | Ex | | | Copper nitrate | Cu(NO ₃) ₂ (3251-23-8) | - | Ex | Ex | | | Copper sulphate | CuSO ₄ (7758-98-7) | - | Ex | Ex | | | Ferric chloride | FeCl ₃ (7705-08-0) | - | Ex | Ex | | | Ferric nitrate | Fe(NO ₃) ₃ | - | Ex | Ex | | | Ferric sulfate | Fe ₂ (SO ₄) ₃ (10028-22-5) | - | Ex | Ex | | | Ferrous chloride | FeCl ₂ (7758-94-3) | - | Ex | Ex | | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | |--|----|--| | LACEHETIC | | suitable for all applications including long term immersion | | | , | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | | | No significant deterioration / barrier properties retained for 1-12 weeks | | Moderate | M | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | Р | Significant deterioration / loss of barrier properties after 1 week or less | | Poor | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal fo | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |---|------------------------------------|---|---------------|----------------|-----------------| | | Ferrous sulfate | FeSO ₄ (7720-78-7) | - | Ex | Ex | | | Magnesium bisulfate | Mg(HSO ₄) ₂ (10028-26-9) | - | Ex | Ex | | | Magnesium carbonate | MgCO ₃ (546-93-0) | - | Ex | Ex | | | Magnesium chloride | MgCl ₂ (7786-30-3) | - | Ex | Ex | | | Magnesium sulphate
(Epsom salt) | MgSO ₄ (7487-88-9) | - | Ex | Ex | | | Mercuric chloride | HgCl ₂ (7487-94-7) | - | Ex | Ex | | | Mercuric cyanide | Hg(CN) ₂ (592-04-1) | - | Ex | Ex | | | Nickel ammonium sulfate | (NH ₄) ₂ Ni(SO ₄) ₂ (7785-20-8) | - | Ex | Ex | | | Nickel chloride | NiCl ₂ (7718-54-9) | - | Ex | Ex | | uned | Nickel nitrate | Ni(NO ₃) ₂ (13138-45-9) | - | Ex | Ex | | Salt Solutions (All Concentrations) continued | Nickel sulphate | NiSO ₄ (7786-81-4) | - | Ex | Ex | | ous) | Potassium bisulfite | KHSO ₃ (7773-03-7) | - | Ex | Ex | | ntrati | Potassium bromide | KBr (7758-02-3) | - | Ex | Ex | | oncei | Potassium carbonate | K ₂ CO ₃ (584-08-7) | - | Ex | Ex | | (All C | Potassium chlorate | KCIO ₃ (3811-04-9) | - | Ex | Ex | | tions | Potassium chloride | KCI (7447-40-7) | - | Ex | Ex | | Solut | Potassium cyanide | KCN (151-50-8) | - | Ex | Ex | | Salt | Potassium dichromate | K ₂ Cr ₂ O ₇ (7778-50-9) | - | Ex | Ex | | | Potassium diphosphate | K ₂ HPO ₄ (7758-11-4) | - | Ex | Ex | | | Potassium ferricyanide | K ₃ [Fe(CN) ₆] (13746-66-2) | - | Ex | Ex | | | Potassium ferrocyanide | K ₄ [Fe(CN) ₆] (13943-58-3) | - | Ex | Ex | | | Potassium iodide | KI
(7681-11-0) | - | Ex | Ex | | | Potassium nitrate | KNO ₃ (7757-79-1) | - | Ex | Ex | | | Potassium permanganate | KMnO ₄ (7722-64-7) | - | Ex | Ex | | | Potassium sulfate | K ₂ SO ₄ (7778-80-5) | - | Ex | Ex | | | Potassium sulfide | K ₂ S (1059-82-5) | - | Ex | Ex | | | Potassium sulphite | K ₂ SO ₃ (10117-38-1) | - | Ex | Ex | | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | |--|----|--| | LACEHETIC | | suitable for all applications including long term immersion | | | , | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | G | Suitable for short-term immersion and general chemical contact | | | | No significant deterioration / barrier properties retained for 1-12 weeks | | Moderate | M | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | | Р | Significant deterioration / loss of barrier properties after 1 week or less | | Poor | | Not suitable for any applications | | * Product must be post cured to deliver quoted chemical resistance | | Product must be post cured to deliver quoted chemical resistance | | Ex | | Bold text highlights real life data obtained via chemical resistance testing | | Ex Normal fo | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | | Chemical name
(Synonym) | Chemical formula
(CAS number) | Concentration | 20°C
(68°F) | 40°C
(104°F) | |---|--|---|---------------|----------------|-----------------| | | Silver nitrate | AgNO ₃ (7761-88-8) | - | Ex | Ex | | | Sodium acetate | CH ₃ COONa (127-09-3) | - | Ex | Ex | | | Sodium aluminate | NaAlO ₂ (1302-42-7) | - | Ex | Ex | | | Sodium bicarbonate | NaHCO ₃ (144-55-8) | - | Ex | Ex | | | Sodium bisulfate | NaHSO ₄ (7681-38-1) | - | Ex | Ex | | | Sodium bisulfite | NaHSO ₃ (7631-90-5) | - | Ex | Ex | | | Sodium borate
(borax) | Na ₂ B ₄ O ₇ (1303-96-4) | - | Ex | Ex | | | Sodium bromide | NaBr
(7647-15-6) | - | Ex | Ex | | pent | Sodium carbonate
(soda ash) | Na ₂ CO ₃ (497-19-8) | - | Ex | Ex | | ontir | Sodium chlorate | NaClO ₃ (7775-09-9) | - | Ex | Ex | | o (suc | Sodium chloride | NaCl (7647-14-5) | - | Ex | Ex | | ıtrati | Sodium chromate | Na ₂ CrO ₄ (7775-11-3) | - | Ex | Ex | | oncer | Sodium cyanide | NaCN (143-33-9) | - | Ex | Ex | | All Co | Sodium fluoride | NaF (7681-49-4) | - | Ex | Ex | | Salt Solutions (All Concentrations) continued | Sodium fluorosilicate | Na ₂ SiF ₆ (16893-85-9) | - | Ex | Ex | | Solut | Sodium metaphosphate | (NaPO ₃) ₆ (10124-56-8) | - | Ex | Ex | | Salt | Sodium metasilicate
(sodium silicate) | Na ₂ SiO ₃ (6834-92-0) | - | Ex | Ex | | | Sodium nitrate | NaNO ₃ (7631-99-4) | - | Ex | Ex | | | Sodium phosphate (dibasic) | Na ₂ HPO ₄ (7558-79-4) | - | Ex | Ex | | | Sodium phosphate (tribasic) | Na ₃ PO ₄ (7601-54-9) | - | Ex | Ex | | | Sodium sulfate | Na ₂ SO ₄ (7757-82-6) | - | Ex | Ex | | | Sodium sulfide | Na ₂ S (1313-82-2) | - | Ex | Ex | | | Stannous chloride
(tin chloride) | SnCl ₂ (7772-99-8) | - | Ex | Ex | | | Zinc chloride | ZnCl ₂ (7646-85-7) | - | Ex | Ex | | | Zinc sulfate | ZnSO ₄ (7733-02-0) | - | Ex | Ex | | | | No starting the starting the starting through the F2 and | |---|----|--| | Excellent | Ex | No significant deterioration / barrier properties retained for greater than 52 weeks. | | | | suitable for all applications including long term immersion | | Good | G | No significant deterioration / barrier properties retained for 12-52 weeks | | Good | | Suitable for short-term immersion and general chemical contact | | 0.0 | | No significant deterioration / barrier properties retained for 1-12 weeks | | Moderate | M | Suitable for applications involving short term chemical contact e.g. spillage, splashing or secondary containment | | Door | P | Significant deterioration / loss of barrier properties after 1 week or less | | Poor | P | Not suitable for any applications | | * | | Product must be post cured to deliver quoted chemical resistance | | | | | | Ex | | Bold text highlights real life data obtained via chemical resistance testing | | Ex | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Ex Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents | | Normal font indicates that the resistance has been predicted based upon partial test data and /or similar reagents |